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Abstract We consider the maximization γ = max{xTAx : x ∈ {−1, 1}n} for a given
symmetric A ∈ Rn×n . It was shown recently, using properties of zonotopes and hyperplane
arrangements, that in the special case that A has a small rank, so that A = V V T where
V ∈ Rn×m with m < n, then there exists a polynomial time algorithm (polynomial in n for
a given m) to solve the problem max{xT V V T x : x ∈ {−1, 1}n}. In this paper, we use this
result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper
bounds on γ with no constraints on the rank of A. We also give easily computable necessary
and sufficient conditions for the absence of a gap between the solution and its upper bound.
Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an
illustrative example.
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1 Notation

R denotes the set of real numbers. For integer n, Rn denotes the space of n-dimensional
(column) vectors whose entries are in R, and, for real a and b, {a, b}n denotes the set of all
n-dimensional vectors whose entries are either a or b. For integers n and m, Rn×m denotes the
space of all n ×m matrices whose entries are in R. For A ∈ Rn×m , AT denotes the transpose
of A. If A = AT ∈ Rn×n , λ(A) denotes the smallest and λ̄(A) the largest, eigenvalue of A
and we write A � 0 if λ(A) ≥ 0 and A � 0 if λ(A) > 0. The m–dimensional identity matrix
is denoted by Im and the m × n null matrix is denoted by 0m,n with the subscripts omitted if
they can be inferred from the context. For A = AT ∈ Rn×n the spectral decomposition is the
decomposition A = U�U T , where U ∈ Rn×n is orthogonal and � ∈ Rn×n is a diagonal
matrix of the eigenvalues of A.

2 Introduction

In this paper we consider the classical NP–hard unconstrained quadratic integer programming
(QIP) problem in (−1, 1) variables

γ := max
x ∈ {−1, 1}n

xTAx,

for given A = AT ∈ Rn×n [11]. The QIP problem has many applications in combinatorial
optimization. The form of the QIP considered here can be generalized to zero one problems
using the simple linear transformation y = (x + e)/2 where e ∈ Rn is the vector of ones
and to problems involving a linear term (xTAx + 2bT x for given b ∈ Rn) using the simple
homogenization procedure

max
x ∈ {−1, 1}n

xTAx + 2bT x = max
x ∈ {−1, 1}n

xn+1 ∈ {−1, 1}
xTAx + 2bT xxn+1

= max
x ∈ {−1, 1}n+1

xT
[

A b
bT 0

]
x .

It is well known that other optimization problems, such as the Maximum-Cut Problem [6]
can also be transformed to the QIP problem.

Since the QIP problem is NP hard, exact solutions of large-scale problems are normally
impossible to obtain. However, in many practical applications bounds are often sufficient.
These may help to identify sub-optimal solutions or to indicate infeasibility of the design
objectives.

The original motivation of this work, and also of our related work in [19], arose from
the attempt to develop systematic methods for breaching the convex relaxation upper bound
of the structured singular value arising in robust control [12–16,18]. Our approach to both
problems is similar: The solution of the dual (relaxation) problem is used to formulate an
auxiliary optimization problem which is of the same form as the primal, but of reduced rank,
and thus computationally tractable. The solution of the auxiliary problem is then shown to
induce improved bounds on the original (primal) problem. We believe that this approach is
general and can be applied to a large class of optimization problems where relaxations are
employed. Apart from the similarity of the general approach, the QIP considered in this work
appears to be directly relevant to the structured singular value problem in the case of real
uncertainty [15].

123



J Glob Optim (2007) 39:543–554 545

For notational convenience in our subsequent analysis, we redefine the constraint set as

X := {−n− 1
2 , n− 1

2 }n = 1√
n

{−1, 1}n, (2.1)

so that the QIP we consider becomes

γ := max
x ∈ X

f (x) = 1

n
max

y∈{−1,1}n
f (y), (2.2)

where

f (x) = xTAx = 1

n
f (

√
nx), y = √

nx ∈ {−1, 1}n . (2.3)

The paper is organized as follows. In Sect. 3 we derive a sequence of non–increasing upper
bounds on the QIP problem. Each successive bound can be obtained by solving a reduced
rank QIP problem of increasing rank. Section 4 establishes a link between these reduced
rank QIP problems and the problem of enumerating the vertices of a zonotope. Section 5
incorporates the semidefinite relaxation upper bound into our scheme. Section 6 gives an
example that illustrates our bounds. Finally, we summarize our results in Sect. 7.

3 Upper bounds on the QIP problem

In this section we present our main results which generalize the technique in [19]. Our results
can be formulated directly in the form of two algorithms. These involve a sequential proce-
dure and a “one-shot” method, respectively, both of which can be solved in polynomial-time.
In either case, the bounds on the original QIP problem are obtained by solving an auxiliary
QIP problem of reduced rank, which determines the complexity of the resulting relaxation
algorithm. Thus, it is possible to calculate the tightest possible bound which can be obtained
with our method that is compatible with the available computational power.

Consider the QIP problem defined in Eqs. 2.2 and 2.3. If all the eigenvalues of A are equal
(that is, if A = λIn for some λ ∈ R), then the solution of the QIP problem is trivial and we
may therefore assume that A has at least two distinct eigenvalues. The next result defines
a sequence of non–increasing upper bounds on γ , starting from the largest eigenvalue of
A, which is known to be an upper bound on γ . The derivation of each bound requires the
solution of a reduced rank QIP problem of the form maxx∈X xT V V T x where V is a tall
matrix. The result is given in a form that is readily implementable as an algorithm.

Lemma 3.1 Let A = AT ∈ Rn×n be given and assume that A has at least two distinct ei-
genvalues. Let X , γ and f (x) be as defined in (2.1), (2.2) and (2.3), respectively. Let A have
r distinct eigenvalues λ1 > · · · > λr with multiplicities m1, . . . , mr , respectively, where
2 ≤ r ≤ n and

∑r
i=1 mi = n so that A has an ordered spectral form

A = U�U T = [
U1 · · · Ur

]
⎡
⎢⎣

λ1 Im1 · · · 0
...

. . .
...

0 · · · λr Imr

⎤
⎥⎦

⎡
⎢⎣

U1
T

...

Ur
T

⎤
⎥⎦ =

r∑
j=1

U jλ j U j
T ,

where U = [ U1 · · · Ur ] ∈ Rn×n is orthogonal, � = diag(λ1 Im1 , . . . , λr Imr ) is the diag-
onal matrix of the eigenvalues of A, with Ui ∈ Rn×mi , i = 1, . . . , r . Set

f0(x) = 0, φ0 = 0, γ0 = 0, λr+1 = 0,

and for i = 1, . . . , r, define
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fi (x) =
i∑

j=1

xT U j
λ j − λi+1

γi − λi+1
U j

T x (3.1)

= xT [
U1 · · · Ui

]
⎡
⎢⎢⎣

λ1−λi+1
γi −λi+1

· · · 0
...

. . .
...

0 · · · λi −λi+1
γi −λi+1

⎤
⎥⎥⎦

⎡
⎢⎣

U1
T

...

Ui
T

⎤
⎥⎦ x,

φi = max
x∈X

fi (x), (3.2)

γi = φi−1γi−1 + (1 − φi−1)λi . (3.3)

Then for i = 1, . . . , r ,

0 ≤ φi ≤ 1, (3.4)

λi ≤ γi , (3.5)

and
γ ≤ γi . (3.6)

Furthermore,

γ =γi ⇔ φi =1 ⇔ ∃x ∈X such that φi−1 = fi−1(x) and
i∑

j=1

xT U j U j
T x =1. (3.7)

Hence,
γ = γr ≤ · · · ≤ γ2 ≤ γ1 = λ1. (3.8)

Finally, suppose that φ j < 1 for j = 1, . . . , i − 1 and φi = 1. Then

γ = γr = · · · = γi < γi−1 < · · · < γ1. (3.9)

Proof First note that f1(x) = xT U1U1
T x and so 0 ≤ φ1 ≤ 1 since 0 � U1U1

T � In . Next,
we prove (3.4) and (3.5) by induction. Clearly, λ1 = γ1. Thus (3.4) and (3.5) are satisfied
for i = 1. Suppose they are satisfied for i < r and let γi+1 be defined by (3.3). Then since
γi ≥ λi > λi+1 and 0 ≤ φi ≤ 1 it follows that γi+1 ≥ λi+1. An inspection of (3.1) (with i
set to i + 1) verifies that fi+1(x) ≥ 0. Furthermore, a simple calculation verifies that for all
x ∈ X and 0 < i < r − 1,

fi+1(x) = 1 −
(γi − λi+1) [φi − fi (x)] + (λi+1 − λi+2)

[
1 −

i+1∑
j=1

xT U j U j
T x

]

(γi+1 − λi+2)
,

and so fi+1(x) (and hence φi+1) is ≤ 1 since all terms in bracket in both numerator and
denominator are non-negative. This proves (3.4) and (3.5).

Next we prove (3.6). A manipulation shows that (see Appendix A for a full derivation)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

γ1 −
r∑

j=2
xT U j (λ1 − λ j )U j

T x − λ1(1 − xT x),

γi − hi (x), 1 < i < r,
γr − (γr−1 − λr ) (φr−1 − fr−1(x)) − λr (1 − xT x),

(3.10)

fi (x) =
⎧⎨
⎩

xT U1U1
T x, i = 1,

1 − gi (x), 1 < i < r,
γ −1

r f (x), i = r,
(3.11)
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where

hi (x) = (γi−1 − λi ) (φi−1 − fi−1(x)) −
r∑

j=i+1

xT U j (λi − λ j )U j
T x − λi (1 − xT x)

gi (x) =
(γi−1 − λi )

[
φi−1 − fi−1(x)

] + (λi − λi+1)[1 −
i∑

j=1

xT U j U j
T x]

(γi − λi+1)
·

The three expressions for f (x) show that for each i = 1, 2, . . . , r , f (x) ≤ γi for every
x ∈ X ; using (3.2) this shows that γ ≤ γi for all i = 1, 2, . . . , r ; which is (3.6).

We prove (3.7) first when i = 1. Now using the definition of φi and the first expression
of fi (x) in (3.11),

φ1 = max
x∈X

f1(x) = max
x∈X

xT U1U1
T x .

It follows that φ1 = 1 if and only if there exists x ∈ X such that xT U1U1
T x = 1. Using the

definition of γ and the first expression for f (x) in (3.10),

γ = max
x∈X

f (x) = max
x∈X

γ1 −
r∑

j=2

xT U j (λ1 − λ j )U j
T x .

It follows that γ = γ1 if and only if there exists x ∈ X such that
∑r

j=2 xT U j (λ1−λ j )U j
T x =

0, or equivalently, if xT U1U1
T x = 1 since λ1 > λ j for all j > 1. Next, we prove (3.7)

for i such that 1 < i < r . Suppose first that γ = γi for some i such that 1 < i < r .
Then there exists x̂ ∈ X such that f (x̂) = γ = γi , i.e. fi−1(x̂) = φi−1 and U T

j x̂ = 0 for
j = i + 1, . . . , r . Thus

1 = ‖x̂‖2 =
r∑

j=1

x̂ T U j U
T
j x̂ =

i∑
j=1

x̂ T U j U
T
j x̂,

and so fi (x̂) = 1 by (3.11). Since fi (x) ≤ 1 for every x ∈ X we have that φi =
maxx∈X fi (x) = fi (x̂) = 1. Conversely, suppose that φi = 1 (1 < i < r ). Then, since
fi (x) ≤ 1 for every x ∈ X , there exists x̂ ∈ X such that fi (x̂) = 1. Since γi−1 − λi > 0,
λi −λi−1 > 0 and γi −λi+1 > 0, this implies that fi−1(x̂) = φi−1 and

∑i
j=1 x̂ T U j U T

j x̂ = 1,

hence U T
j x̂ = 0 for j = i + 1, . . . , r . Thus maxx∈X f (x) = f (x̂) = γi or γ ≥ γi , which

together with (3.6) proves that γ = γi . To prove (3.7) when i = r , note that

φr = max
x∈X

fr (x) = 1

γr
max
x∈X

f (x) = γ

γr
·

It follows that γ = γr if and only if φr = 1. Furthermore, using the third expression of f (x)

in (3.10),
γ = max

x∈X
f (x) = max

x∈X
γr − (γr−1 − λr ) (φr−1 − fr−1(x)) .

It follows that γ = γr if and only if there exists x ∈ X such that φr−1 = fr−1(x) as required
(since

∑r
j=1 xT U j U j

T x = 1 for all x ∈ X and γr−1 > λr ).
To prove (3.8) we need to show that {γi } is a non-increasing sequence with γr = γ . The

first property follows on noting that γi−1 − γi = (γi−1 − λi )(1 − φi−1) using (3.3), since
0 ≤ φi ≤ 1 and γi−1 ≥ λi−1 > λi . To show that γr = γ note first that γ ≤ γr from (3.6).
Let x̂ ∈ argmax{ fr−1(x) : x ∈ X } so that fr−1(x̂) = φr−1. Then using the third expression
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for f (x) in (3.10) we get f (x̂) = γr since x̂ T x̂ = 1. Thus γ ≥ γr and so γ = γr . Note that
in this case, we also have argmax{ f (x) : x ∈ X } = argmax{ fr−1(x) : x ∈ X }.

Finally, suppose that φ j < 1 for j = 1, . . . , i − 1 and φi = 1. Then, there exists x̂ ∈ X
such that fi (x̂) = 1. This, together with the second expression for fi (x) in (3.11), implies
that fi−1(x̂) = φi−1 and that U T

j x̂ = 0 for j = i + 1, . . . r . Thus the second expression for
f (x) in (3.10) implies that f (x̂) = γi so that γ ≥ γi , and this in turn implies that γ = γi

from (3.6). Equation (3.8) now implies that

γ = γr = · · · = γi ≤ γi−1 ≤ · · · ≤ γ1. (3.12)

Next, suppose for contradiction that one of the above inequalities is actually an equality, i.e.
that γ j = γ j−1 =: γ̂ for some j ≤ i . Since γ j = φ j−1γ j−1 + (1 − φ j−1)λ j , this implies
that (1 − φ j−1)γ̂ = (1 − φ j−1)λ j and hence that γ j = γ j−1 = λ j since φ j−1 < 1 by
assumption; this however is a contradiction since γ j−1 ≥ λ j−1 > λ j , which establishes
(3.9) and concludes the proof. 
�

The algorithm suggested by Lemma 3.1 iteratively calculates a non-increasing sequence
γi , i = 1, . . . , r − 1, of upper bounds on γ . Each step requires the solution of the max-
imization problem in (3.2). Although, as shown in [2] (see Sect. 4 below), each of these
optimizations can be solved in polynomial time in n, as i tends to r the cost becomes prohib-
itive and, as far as we are aware, the solution of (3.2) at level i does not help in the solution
at level i + 1.

Lemma 3.1 establishes monotonicity properties of our bounds, as well as necessary and
sufficient conditions for γ = γi . The following corollary suggests a “one shot” algorithm
and is a recasting of Lemma 3.1.

Corollary 3.2 Let A = AT ∈ Rn×n be as given in Lemma 3.1. Choose the largest i such
that 1 ≤ i < r and such that the maximization in (3.13) below is tractable. Define

V1 = [
U1 · · · Ui

]
, �1 =

⎡
⎢⎣

λ1 Im1 · · · 0
...

. . .
...

0 0 λi Imi

⎤
⎥⎦ ,

V2 = Ui+1, �2 = λi+1 Imi+1 ,

V3 = [
Ui+2 · · · Ur

]
, �3 =

⎡
⎢⎣

λi+2 Imi+2 · · · 0
...

. . .
...

0 0 λr Imr

⎤
⎥⎦ ,

so that A has a spectral form given by

A = U�U T = [
V1 V2 V3

]
⎡
⎣�1 0 0

0 �2 0
0 0 �3

⎤
⎦

⎡
⎣ V1

T

V2
T

V3
T

⎤
⎦ .

Let
S := �1 − �2 = �1 − λi+1 Imi+1 ,

so that S � 0 and is diagonal, and define

V = V1S
1
2 ∈ Rn×m,

where m = ∑i
j=1 m j . Let φ̄i be the maximum of the reduced rank quadratic integer program

(RRQIP)
(RRQIP) φ̄i = max

x∈X
xT V V T x . (3.13)
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Then
γ := max

x ∈ X
xTAx ≤ λi+1 + φ̄i =: γi .

Furthermore, γ = γi if and only if there exists a maximizer xi ∈ X for (3.13) such that
V3

T xi = 0.

Proof The corollary follows from Lemma 3.1 since

γi+1 = φiγi + (1 − φi )λi+1 = λi+1 + (γi − λi+1)φi = λi+1 + φ̄i ,

from (3.3) and the definitions of φi in (3.2) and φ̄i in (3.13). However, since the result may
be used directly to develop an algorithm for calculating our bounds, we give an independent
proof.

Using A = U�U T , UU T = V1V1
T + V2V2

T + V3V3
T = In , and xT x = 1 for all x ∈ X ,

a simple manipulation verifies the following equality valid for all x ∈ X

xTAx = λi+1 + xT V1(�1 − �2)V1
T x − xT V3(�2 − �3)V3

T x .

The result now follows upon noting that S = �1 − �2 � 0 and �2 − �3 � 0 imply that
xTAx ≤ λi+1 + φ̄i . 
�

4 A polynomial time solution to the RRQIP problem

The RRQIP problem in (3.13) has been considered in a slightly modified form (x ∈ {0, 1}n)
in [2]. In our notation, [2] argue that the solution of (3.13) reduces to the enumeration of the
extreme points of the zonotope Z = {V T x : x ∈ X }, where m < n since

φ̄i = max
x ∈ X

xT V V T x = max
z ∈ Z

zT z,

and the last maximization is achieved at an extreme point of Z since Z is convex. The prob-
lem of enumerating the extreme points of Z is well known, see for example [5,7,8,20,24],
although the treatment is given in the equivalent dual setting of finding arrangements of
hyperplanes. It is shown in [2] that this identification gives the number of vertices of Z as
O(nm−1) and allows the enumeration of the vertices in an O(nm−1) time algorithm for m ≥ 3
and O(nm) time algorithm for m ≤ 2.

The reverse-enumeration algorithm [3,9] is a systematic polynomial-time procedure for
visiting all nodes of the adjacency-graph of the arrangement and thus identifying all extreme
points of Z. The algorithm was implemented in Matlab and was found to perform well for
small and medium-size problems. See [19] for additional details of this algorithm and its
implementation.

5 Incorporating the semidefinite relaxation

In this section we incorporate into our technique the semidefinite relaxation method for
obtaining upper bounds on γ ; see [1,4,17,22,23], and [21] and the references therein.

For any symmetric A, D ∈ Rn×n and e, x ∈ Rn the following identity

xTAx = −(eT De − xT Dx) − xT (D − A)x + eT De, (5.1)
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can be easily verified. Set

e = 1√
n

⎡
⎢⎣

1
...

1

⎤
⎥⎦ ∈ Rn .

Then for all x ∈ X and diagonal D such that D − A � 0 we have xTAx ≤ eT De and so

γ = max
x ∈ X

xTAx ≤ γ̄ ,

where
(SDR) γ̄ := min

D is diagonal
D − A � 0

eT De,

so that γ̄ is an upper bound on γ . Let D̄ be a minimizer for the SDR problem so that D̄ is
diagonal, eT D̄e = γ̄ and D̄ − A � 0 with

λ̄(A − D̄) = 0. (5.2)

(See [21]). Substituting eT D̄e = γ̄ in (5.1) and noting that eT D̄e = xT D̄x for all x ∈ X ,

γ = max
x∈X

xTAx = max
x∈X

−xT (D̄ − A)x + γ̄ = max
x∈X

xT Āx,

where
Ā = γ̄ In + A − D̄,

and we can use Ā instead of A in our algorithm. However, γ̄ = λ̄( Ā) from (5.2) and so the
semidefinite relaxation upper bound becomes our first bound γ1 (since γ1 = λ̄( Ā) = γ̄ ).
Thus our subsequent bounds are, in general, tighter than the SDR bound.

6 Example

Consider the test problem (QIP2, p. 305) in [10]:

γ = min
x∈{0,1}n

xTAx, (6.1)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −2 2 8 −5 1 −4 0 0 8
−2 2 0 −5 4 −4 −4 −5 0 −5

2 0 2 −3 7 0 −3 7 5 0
8 −5 −3 −1 −3 −1 7 1 7 2

−5 4 7 −3 1 0 −4 2 4 −2
1 −4 0 −1 0 1 9 5 2 0

−4 −4 −3 7 −4 9 3 1 2 0
0 −5 7 1 2 5 1 0 −3 −2
0 0 5 7 4 2 2 −3 2 3
8 −5 0 2 −2 0 0 −2 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the optimal solution γ is known to be equal to −29. By transforming the minimization
into maximization, (0,1) variables into (−1, 1) variables, and incorporating the semidefinite
relaxation bound as outlined in Sect. 5, Corollary 3.2 gives the bounds γ1, · · · , γ10 shown in
the graph below. Note that γ1 is the SDR bound and γ10 = γ = −29 (Fig 1).
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Fig. 1 Graph of the bounds γi for i = 1, . . . , 10 for the problem in (6.1)

7 Summary

By way of summarizing our results, we list the contributions of this paper:

1. We have used the identification in [2] of the solution of the reduced rank QIP problem
with the problem of enumerating the extreme points of a low dimensional zonotope to
derive a sequence of non-increasing upper bounds on the QIP problem.

2. Our work generalizes the work in [2], which only deals with QIP problems where the data
matrix A has a small rank, to the case where A has no rank restrictions.

3. Our bounds are given in two forms readily implementable as algorithms.
4. We have incorporated the semidefinite relaxation upper bound developed in [1,4,17,21–

23] so that it is equal to our first bound γ1.

Appendix A

Here we give a detailed derivation of the three expressions for f (x) and fi (x) used in the
proof of Lemma 3.1. This is summarized in the following lemma.

Lemma 8.1 In previously defined notation, (3.10) and (3.11) hold.

Proof We start by establishing the expressions for fi (x). The expressions for f1(x) and
fr (x) are immediate. To establish the expression for fi (x) for 1 < i < r , we start with the
definition of fi (x) in (3.1). This gives
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(γi+1 − λi+2) fi+1(x) =
i+1∑
j=1

(λ j − λi+2)xT U j U
T
j x

=
i∑

j=1

(λ j − λi+1)xT U j U
T
j x + (λi+1 − λi+2)

i+1∑
j=1

xT U j U
T
j x

= (γi − λi+1) fi (x) + (λi+1 − λi+2)

i+1∑
j=1

xT U j U
T
j x

= (γi − λi+1)( fi (x) − φi ) + φi (γi − λi+1)

+(λi+1 − λi+2)

i+1∑
j=1

xT U j U
T
j x

Using γi+1 = φi (γi − λi+1) + λi+1 gives

(γi+1 − λi+2) fi+1(x) = γi+1 − λi+2 + (γi − λi+1) ( fi (x) − φi )

−(λi+1 − λi+2)

⎡
⎣1 −

i+1∑
j=1

xT U j U
T
j x

⎤
⎦

and hence

fi+1(x) = 1 −
(γi − λi+1)(φi − fi (x)) + (λi+1 − λi+2)

[
1 − ∑i+1

j=1 xT U j U T
j x

]
γi+1 − λi+2

as required.
The first expression for f (x) can be established by writing

f (x) =
r∑

j=1

λ j xT U j U
T
j x = λ1xT U1U T

1 x +
r∑

j=2

λ j xT U j U
T
j x

= γ1 −
r∑

j=2

(λ1 − λ j )xT U j U
T
j x − λ1(1 − xT x)

since γ1 = λ1. To derive the second expression for f (x), we first write

f (x) =
r∑

j=1

λ j xT U j U
T
j x

=
r∑

j=1, j �=i

λ j xT U j U
T
j x − λi

r∑
j=1, j �=i

xT U j U
T
j x + λi

r∑
j=1

xT U j U
T
j x

=
i−1∑
j=1

(λ j − λi )xT U j U
T
j x − λi

r∑
j=i+1

xT U j U
T
j x +

r∑
j=i+1

λ j xT U j U
T
j x + λi xT x .
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Thus, on using (3.1) and (3.3),

f (x) = (γi−1 − λi ) fi−1(x) − λi

r∑
j=i+1

xT U j U
T
j x +

r∑
j=i+1

λ j xT U j U
T
j x + λi xT x

= γi − (γi−1 − λi )(φi−1 − fi−1(x)) −
r∑

j=i+1

(λi − λ j )xT U j U
T
j x − λi (1 − xT x).

Finally, the third expression for f (x) follows by writing

f (x) =
r∑

j=1

λ j xT U j U
T
j x =

r−1∑
j=1

λ j xT U j U
T
j x + λr xT Ur U T

r x

=
r−1∑
j=1

(λ j − λr )xT U j U
T
j x + λr

r−1∑
j=1

xT U j U
T
j x + λr xT Ur U T

r x

= (γr−1 − λr ) fr−1(x) + λr xT x

= γr − (γr−1 − λr ) (φr−1 − fr−1(x)) − λr (1 − xT x)

where again we have used (3.1) and (3.3). This completes the proof. 
�
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